TO PASS 80% or higher

Keep Learning

GRADE 100%

Optimization algorithms

LATEST SUBMISSION GRADE 100%

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	1/1 point
	$\bigcirc \ a^{[8]\{3\}(7)}$	
	$\bigcirc a^{[3](7)(8)}$	
	$\bigcirc \ a^{[8]\{7\}\{3)}$	
	✓ Correct	
2.	Which of these statements about mini-batch gradient descent do you agree with?	1/1 point
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, sthat the algorithm processes all mini-batches at the same time (vectorization).	
	 Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than traini one epoch using batch gradient descent. 	ng
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	f
	✓ Correct	
33.	Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	1/1 point
	☐ If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-bat gradient descent.	ch
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	✓ Correct	
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training s before making progress.	et
	✓ Correct	
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
4.	Suppose your learning algorithm's cost J , plotted as a function of the number of iterations, looks like this:	1/1 point

Which of the following do you agree with?

- O If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent,

- /	.)	Whathery	vourra ucini	a hatch a	radiont d	laccent o	r mini-ha	tch gradi	ent descent	thic	looke =	rrantahla

✓ Correct

5. Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $heta_1=10^oC$ Jan 2nd: $heta_210^oC$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- \bigcirc $v_2 = 10, v_2^{corrected} = 7.5$
- $v_2 = 7.5, v_2^{corrected} = 10$
- \bigcirc $v_2 = 7.5, v_2^{corrected} = 7.5$
- $\bigcirc \ v_2 = 10, v_2^{corrected} = 10$

✓ Correct

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1/1 point

- $\alpha = \frac{1}{\sqrt{t}} \alpha_0$
- $\bigcap \alpha = \frac{1}{1+2*t}\alpha_0$
- \bigcirc $\alpha = e^t \alpha_0$
- $\alpha = 0.95^t \alpha_0$

✓ Correct

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1 / 1 point

- \square Decreasing β will shift the red line slightly to the right.
- $\hfill \square$ Increasing β will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

lacksquare Decreasing eta will create more oscillation within the red line.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

 $\begin{tabular}{|c|c|c|c|c|}\hline & Increasing β will create more oscillations within the red line. \\ \end{tabular}$

10. Which of the following statements about Adam is False?

1/1 point

- Adam should be used with batch gradient computations, not with mini-batches.
- \bigcirc . We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8})$
- O Adam combines the advantages of RMSProp and momentum
- $\hfill \bigcirc$ The learning rate hyperparameter α in Adam usually needs to be tuned.

✓ Correct